[スポンサーリンク]

化学者のつぶやき

遷移金属触媒がいらないC–Nクロスカップリング反応

[スポンサーリンク]

遷移金属触媒を用いないC–Nカップリング反応が報告された。フェノールとアミンがジクロロピラジンにSNAr反応することで両者が近接化、電子的活性化され、C–N結合が形成される。

C–Nクロスカップリング反応

Buchwald–Hartwigアミノ化をはじめとする遷移金属触媒を用いたC–Nクロスカップリング反応は、1990年代から精力的に開発が進められており、医薬品合成等で頻繁に用いられる(図1A)[1,2]。遷移金属触媒を用いた同反応は、官能基許容性は高いが高価な金属や配位子を必要とし、水や空気に敏感な条件も多い。一方で、遷移金属触媒を用いないアミノ化反応として、古くより芳香族求核置換(SNAr)反応が知られているが、この反応は電子求引性基や脱離能の高い置換基をもつ芳香環に限られる。そのため、官能基許容性の高い遷移金属を用いないC–Nクロスカップリング反応の開発が望まれる。

2008年にBiらは、塩基性条件下、クロロアミノピラジンとフェノールをマイクロ波照射下、加熱すると、フェノールのSNAr反応、続くSmiles転位が進行し、N-アリールアミノピラジノンを合成できることを見いだした(図1B)[3]。また、2020年に著者らはクロロピラジン2を用いたピリジン1のC2位アミノ化反応を報告した(図1C)[4]。この反応では12のSNAr反応の後、電子不足なピリジンのC2位へアミノ基が転位する。最後に、還元的にピラジンを除去することでアミノ化体4を与える。

今回著者らは、Biらの反応を参考にし、ジクロロピラジン7を利用すればフェノール5とアミン6のクロスカップリング反応が進行し、還元処理によりカップリング体8を与えると考えた(図1D)。

図1. (A) 芳香族アミノ化反応 (B) 多置換ピラジンを用いたアミノ化 (C) ピリジンのC2位選択的アミノ化 (D) 遷移金属を用いないC–Nクロスカップリング反応 (本研究)

 

Transition-Metal-Free C−N Cross-Coupling Enabled by a Multifunctional Reagent
Fier, P. S.; Kim, S. J. Am. Chem. Soc. 2024, 146, 6476–6480.
DOI: 10.1021/jacs.4c00871

論文著者の紹介

研究者:Patrick S. Fier

研究者の経歴:

2014                                                    Ph.D., University of California, Berkeley (Prof. John F. Hartwig)
2015–2017          Senior Scientist, Merck & Co., Inc., USA
2017–2020                                       Associate Principal Scientist, Merck & Co., Inc., USA
2020–                                                  Principal Scientist, Merck & Co., Inc., USA

研究内容:合成終盤で利用可能な官能基変換反応の開発

論文の概要

著者らはC–N結合形成のためにフェノールと第一級アミンの両者を近接化、電子的活性化する試薬として市販のジクロロピラジン7(1.3ドル/mmol)に注目し、反応設計した(図2A)。7とアミン6のSNAr反応によりアミノピラジン9が生成し、続く9とフェノール5のSNAr反応によりフェノキシピラジン10となる。次に、Smiles転位によりピラジンアニオン11を与え、最後に還元的にピラジンを除去することでアミノ化体8を得る。一見シンプルであるが、1) 7の高い求電子性のため、2つの求核剤とのSNAr反応を進行させることができる 2) 10からの脱プロトン化も容易に進行する 3) 11はアニオンの非局在化により、Smiles転位が進行しやすい などの工夫が施されている。

本反応は種々の多数の官能基をもつアルキルアミンや芳香族アミンに適用でき、対応する8を与えた(図2B)。一方、電子豊富なフェノールではSmiles転位が進行しにくいが、電子求引基がなくとも反応は進行する(本文参照)。さらに著者らは、アミノクロロピラジン9-NH2を用いたフェノール5のアミノ化による芳香族第一級アミン8の合成に成功した (図2C)。9-NH2や、59-NH2のSNAr反応によって生じる10-NH2は二量化が進行しやすい[5]。そのため、塩基と5の混合溶液に9-NH2を少量ずつ添加することでピラジンの二量化を抑制し、効率良くアミノ化体8を与えた。

図2. (A) 推定反応機構 (B) 第一級アミンによるアミノ化反応の基質適応範囲 (C) フェノールのアミノ化による芳香族第一級アミン合成

以上、温故知新のC–Nカップリング反応が報告された。創薬現場において、コストや工程数、反応環境を考慮して遷移金属触媒を用いる事ができない場合など、活用される可能性がある。

参考文献

  1. (a) Paul, F.; Patt, J.; Hartwig, J. F. Palladium-Catalyzed Formation of Carbon-Nitrogen Bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling of Aryl Halides and Tin Amides. J. Am. Chem. Soc. 1994, 116, 5969–5970. DOI: 10.1021/ja00092a058 (b) Guram, A. S.; Buchwald, S. L. Palladium-Catalyzed Aromatic Aminations with in Situ Generated Aminostannanes. J. Am. Chem. Soc. 1994, 116, 7901–7902. DOI: 10.1021/ja00096a059
  2. (a) Emadi, R.; Bahrami Nekoo, A.; Molaverdi, F.; Khorsandi, Z.; Sheibani, R.; Sadeghi-Aliabadi, H. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions in Pharmaceutical Compounds. RSC Adv. 2023, 13, 18715–18733. DOI: 1039/D2RA07412E (b) Rayadurgam, J.; Sana, S.; Sasikumar, M.; Gu, Q. Palladium Catalyzed C–C and C–N Bond Forming Reactions: An Update on the Synthesis of Pharmaceuticals from 2015–2020. Org. Chem. Front. 2021, 8, 384–414. DOI: 10.1039/D0QO01146K (c) Buskes, M. J.; Blanco, M.-J. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules 2020, 25, 3493. DOI: 10.3390/molecules25153493
  3. Bi, F. C.; Aspnes, G. E.; Guzman-Perez, A.; Walker, D. P. Novel Syntheses of 3-Anilino-Pyrazin-2(1H)-ones and 3-Anilino-Quinoxalin-2-(1H)-ones via Microwave-Mediated Smiles Rearrangement. Tetrahedron Lett. 2008, 49, 1832–1835. DOI: 1016/j.tetlet.2008.01.056
  4. Fier, P. S.; Kim, S.; Cohen, R. D. A Multifunctional Reagent Designed for the Site-Selective Amination of Pyridines. J. Am. Chem. Soc. 2020, 142, 8614–8618. DOI: 10.1021/jacs.0c03537
  5. Jaung, J.; Fukunishi, K.; Matsuoka, M. Syntheses and Spectral Properties of 2,3,7,8‐Tetracyano‐5,10‐Dihydrodipyrazino[2,3‐ b :2′,3′‐ e ]Pyrazine. J.Heterocyclic Chem. 1997, 34, 653–657. DOI: 1002/jhet.5570340251
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 食品衛生関係 ーChemical Times特集より
  2. 韮山反射炉に行ってみた
  3. 【マイクロ波化学(株) 石油化学/プラスチック業界向けウェビナー…
  4. 各ジャーナル誌、続々とリニューアル!
  5. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-…
  6. 高機能な導電性ポリマーの精密合成法の開発
  7. ペプチド修飾グラフェン電界効果トランジスタを用いた匂い分子の高感…
  8. 続・名刺を作ろう―ブロガー向け格安サービス活用のススメ

注目情報

ピックアップ記事

  1. 1st Maruoka Conference on the Frontier of Organic Synthesis and Catalysis
  2. 島津製作所、純利益325億円 過去最高、4年連続で更新
  3. 宮浦憲夫 Norio Miyaura
  4. 大川原化工機株式会社のはなし
  5. テオ・グレイ Theodore Gray
  6. 含フッ素カルボアニオン構造の導入による有機色素の溶解性・分配特性の制御
  7. 「幻のイオン」、テトラフェニルアンモニウムの合成を達成!
  8. リード反応 Reed Reaction
  9. 生きた細胞内でケイ素と炭素がはじめて結合!
  10. 2つ輪っかで何作ろう?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP